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A B S T R A C T

Background. Celiac disease is one of the most common diseases in the world. Capsule endoscopy is an
alternative way to visualize the entire small intestine without invasiveness to the patient. It is useful to
characterize celiac disease, but hours are need to manually analyze the retrospective data of a single patient.
Computer-aided quantitative analysis by a deep learning method helps in alleviating the workload during
analysis of the retrospective videos.

Method. Capsule endoscopy clips from 6 celiac disease patients and 5 controls were preprocessed for
training. The frames with a large field of opaque extraluminal fluid or air bubbles were removed automatically
by using a pre-selection algorithm. Then the frames were cropped and the intensity was corrected prior to frame
rotation in the proposed new method. The GoogLeNet is trained with these frames. Then, the clips of capsule
endoscopy from 5 additional celiac disease patients and 5 additional control patients are used for testing. The
trained GoogLeNet was able to distinguish the frames from capsule endoscopy clips of celiac disease patients vs
controls. Quantitative measurement with evaluation of the confidence was developed to assess the severity level
of pathology in the subjects.

Results. Relying on the evaluation confidence, the GoogLeNet achieved 100% sensitivity and specificity for
the testing set. The t-test confirmed the evaluation confidence is significant to distinguish celiac disease patients
from controls. Furthermore, it is found that the evaluation confidence may also relate to the severity level of
small bowel mucosal lesions.

Conclusions. A deep convolutional neural network was established for quantitative measurement of the
existence and degree of pathology throughout the small intestine, which may improve computer-aided clinical
techniques to assess mucosal atrophy and other etiologies in real-time with videocapsule endoscopy.

1. Background

Celiac disease is one of the most common diseases on the earth,
with its incidence reaching to about 1% of the worldwide population
[1]. The disease is an autoimmune response to ingested gluten. The
immune cascade damages the small intestinal mucosa, i.e. the duode-
num and jejunum, as well as the ileum. It manifests as duodenal folds,
scalloping of folds, mucosal fissures, crevices or grooves, micronodules
in the duodenal bulb, visible submucosal vessels or a mosaic pattern in
the small intestinal mucosa [2]. The traditional diagnosis are typically

made from the assessment of duodenal biopsies using standard
endoscopy, after the serological testing result is confirmed [3]. It is
invasive and expensive to use serological testing and endoscopic biopsy
to diagnose the celiac disease, particularly in developing countries.
More economical methods require consideration for the diagnosis of
celiac disease [4].

Video capsule endoscopy is a feasible non-invasive, pain free, and
friendly alternative, which can potentially be used to visualized the
entire small intestine for detailing the mucosal villous architecture [4].
The visual assessment of villous atrophy is regarded as one of the most
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critical preliminaries for the diagnosis of celiac disease, which is a great
convenience to measure the extent and severity of the mucosal surface
at a sufficient resolution in those patients who are suspected of having
celiac disease.

For the past decade, several research efforts have suggested the
effectiveness and efficiency of video capsule endoscopy in the diagnosis
of celiac disease [2,5,6]. Rondonotti et al. [7] evaluated the presence of
lesions compatible with celiac disease with a sensitivity of 87.5%,
specificity 90.9%, and positive predictive value 96.5%, negative pre-
dictive value 71.4%, positive and negative likelihood ratios 9.6 and
0.14, respectively. Rokkas et al. [8] reported a meta-analysis of capsule
endoscopy in celiac disease, of which the sensitivity and specificity are
up to 89% and 95%, respectively. Ciaccio et al. [4] used capsule
endoscopy videos to assess the severity of celiac disease, with sensitiv-
ity of 88% and specificity of 80% using an incremental classifier, and a
sensitivity of 80% and specificity of 96% when using a threshold
classifier, respectively. However, most of these have exploited low-level
features, such as brightness or texture, to teach classifier component.
These hand-crafted low-level features are incapable of taking full
advantage of contextual information to obtain more representative
features for more accurate recognition.

Recently, the method of deep learning has drawn a lot of attention
in academia and industry [9,10]. This method can be trained to
automatically learn rich feature representation of images in a hier-
archical scheme [11,12]. Motivated by Szegedy Christian et al. [13],
who proposed a deep convolutional neural network architecture named
GoogLeNet which was considered state-of-the-art for classification in
the ImageNet Large-Scale Visual Recognition Challenge, and the
rotation-invariant Fisher discriminative convolutional network
(RIFD-CNN) developed by Cheng et al. [14], we introduce a pre-
rotation scheme for GoogLeNet to assess celiac disease frames.
Quantitative analysis of the videos of the small intestine from celiac
disease patients versus controls are performed. Then a measurement
method termed evaluation confidence (EC) is defined to quantify how
confident the classifier indicates a subject to have celiac disease. In the
experiments, we find that the classifier not only distinguishes celiac
patients with subtle changes in small bowel, but also relates the EC
calculation to the severity level of the tested patients.

2. Methods

2.1. Capsule endoscopy data description

The analysis of capsule endoscopy videos were approved by the
Internal Review Board at Columbia University Medical Center.
Informed consent was obtained from all subjects previously. The
identifiers of the subjects in the video clips were removed prior to
analysis. Only videos reaching the colon were used for further studies,
and subjects under 18 years old, pregnant women, and those with a
history of intestinal obstruction, presence of a pacemaker, or chronic
use of non-steroidal anti-inflammatory drugs (NSAIDs) were excluded.

The capsule endoscopy videos of the small bowel were obtained by
the PillCamSB2 video capsule suite(Given Imaging, Yoqneam, Israel),
which consists of a recorder, recorder cradle, recorder harness, real-
time viewer, real-time viewer cable, antenna lead set, battery pack, and
battery charger. The capsule recorder is 26×11 millimeters in size, with
the frame rate set to 2 frames per second. All subjects swallowed the
capsule early in the morning after a fast 12 h ago with 200 cc of water.
After ingestion of the capsule, further water was forbidden for 2 h, and
a light meal was forbidden for 4 h. The evaluation period completed
after the capsule reached the cecum. The videos were exported using an
HIPAA-compliant PC-based workstation equipped with Given Imaging
analysis software.

Finally, the capsule endoscopy videos from 11 celiac disease
patients and 10 controls, which were obtained at Columbia
University Medical Center from May 1, 2008 to July 31, 2009 were

retrospectively selected for analysis. All the retrospective videocapsule
endoscopy data and duodenal biopsies data were interpreted by three
experienced gastroenterologists. The 11 celiac patients included those
with suspected celiac disease, suspected Crohns disease, obscure
bleeding, iron deficient anemia, and chronic diarrhea who had pre-
viously had a diagnostic biopsy on a regular diet, to evaluate for the
presence of Marsh IIIA, IIIB, or IIIC lesions, except for one patient
with hemophilia. The capsule endoscopy videos were obtained when
these patients were either on a regular diet or on a gluten-free diet for
no more than 3 months. The 11 celiac disease patients consist of 6
females and 5 males, whose mean ages were 50.5 and 44.0, respec-
tively, while the 10 control patients consisted of 6 females and 4 males,
whose mean ages were 50.0 and 51.5, respectively.

2.2. Quantitative analysis using GoogLeNet

The accuracy of image classification has recently been substantially
improved thanks to deep learning techniques, such as deep convolu-
tional neural networks (DCNN). In this study, a DCNN based method is
investigated for quantitative analysis to distinguish celiac patient vs
control data. Without the need for manual rating, the computer-aided
analysis is not only user-friendly, rapid, and low cost for learning and
operation, but is also immune to subjective results by user bias.

The 22-layer GoogLeNet [13], which won the ImageNet Large-Scale
Visual Recognition Challenge, was chosen for this task. The network is
22 layers deep counting layers with parameters without counting
pooling layers [13]. The GoogLeNet is a particular incarnation of
Inception architectures, which repeat many times leading to the 22-
layer model. Readers who are interested in Inception architecture can
refer to the latest detailed publication of rethinking Inception archi-
tecture [15]. In the Inception architecture, 1×1 convolutions reduce the
expensive computation of 3×3 and 5×5 convolutions. A convolution
layer of 7×7 with 3×3 pooling stride 2 start the network. Then another
convolution layer of 3×3 with 3×3 pooling stride 2 follows. After that
there are 9 Inception architectures with occasional max-pooling layers
with stride 2 halving the resolution of the grid. The network finally ends
with average pooling, dropout layer, linear layer, and softmax. The
input of this application is 512×512 rgb image. Another interesting
insight of this network is adding auxiliary classifiers connected to the
intermediate layers, which boosts the information prorogation within
the network and hence improve the training efficacy and enhance the
discrimination capability of the network. As a network going deeper,
there is a concern for the efficiency to propagate gradients back thought
all the layers [13]. It requires the features learned by the intermediate
layers to be very discriminative. Therefore, the auxiliary softmax layers
are added to the intermediates, which are encouraged discrimination in
the lower stages, and propagate back increased gradient [13]. Readers
may learn more theoretical and technical details about GoogLeNet in
[13], which is visualized in the bottom left panel of Fig. 1.

Six celiac disease and five control subjects were randomly selected
from the eleven celiac disease patients and ten control patients to train
the GoogLeNet. Four clips from four regions of the small intestine of
each subject were extracted from the videoclips for this study. The four
regions are: duodenal bulb, duodenum, jejunum, and ileum. Each clip
contains 200 frames, at a rate of 2 frames per second. The resolution of
each frame of the video clips is 576×576 pixels. The frames containing
a large field of opaque extraluminal fluid or air bubbles were removed
by using the pre-selection criterion developed by Mamonov et al. [16].

The video frames consist of a square area but were analyzed with a
circular shape mask. The area outside the circular mask was filled with
a solid color and extra information, as illustrated in the top left panel of
Fig. 1. However, this may create an inconsistency in the actual content
of the frames. To eliminate the inconsistency, we cropped the frame
with an exterior square of the circular mask, as illustrated in the top
middle panel of Fig. 1. The exterior square has dimensions of
512×512 pixels.

T. Zhou et al. Computers in Biology and Medicine 85 (2017) 1–6

2



The frames captured by the capsule endoscopy were subjected to
vignetting which is the fall-off of intensity away from the center of the
frame, due to the absence of the ambient light, directional nature of the
on-board light, and the optical properties of camera lens [16]. An
intensity correction algorithm by Zhang et al. [17] was performed prior
to further processing.

The orientation and angle of the camera were undetermined as the
capsule passed through the gastrointestinal tract. Since we are more
interested in the mucosal texture than the actual orientation of the
camera, we have to eliminate the influence of the orientation and angle
of the camera. Motivated by Cheng et al. [14], we introduced a pre-
rotating scheme. Each frame in the training set was rotated every 15
degrees to form a new candidate proposal for the training set, as
illustrated in the top right panel of Fig. 1. Thus, each frame results in
24 proposals. For clarity, only 4 of 24 proposals are plotted in Fig. 1.

Then the GoogLeNet is trained using these frames and the
corresponding labels, i.e. celiac disease or normal. The GoogLeNet is
first trained with 400 carefully chosen discriminative frames, including
200 from celiac disease patients and 200 from controls. The frames are
chosen according to the following rules: 1) the frames do not contain
opaque extra-luminal fluid or air bubbles; 2) the frames from celiac
disease patients contain evident visual difference include decreased
number of mucosal folds, mosaic appearance, and scalloping; 3) the
frames cover the four regions of the small intestine. This procedure
helps the network to seek a relatively good suboptimal gradient rapidly
for parameters initialization. Then all frames are used to fine-tune the
snapshot of the trained network. During the training, the output of the
softmaxloss layers are weighted by 0.3 and add to the total loss of the
whole network in accordance with the suggestion in [13]. Technical
implementation of the training procedure of DCNN, i.e. GoogLeNet,
has been detailed in [18]. After the GoogLeNet is trained, five celiac
disease and five control subjects were used for testing the quantitative
analysis.

2.3. Automata diagnosis by expectation of the probability

Four capsule endoscopy clips of the 10 testing subject were
preprocessed, the same as during the training sequence, except for
the pre-rotating scheme. The pre-rotating scheme was used to force the
network to learn rotation invariance features in the training stage.
Once learned, this scheme is no long needed in testing stage. Since four
video clips were captured sequentially, the frame extracted from these
videos should also maintain the sequence order. The ith frame of the
video clips of the jth subject is denoted as i

j( ). In this study, we do not
need to distinguish the clips from each other, and this subsequently
reduces manual intervention and speeds up the process. At this stage,
the auxiliary softmax layers are simply discarded. Each frame i

j( ) is
forwarded into the GoogLeNet, which outputs the probability P( )i

j( )

that i
j( ) is classified as suspected celiac disease.

Then we define a measurement term of how confidently we indicate
a subject j as having celiac disease. The EC is the expectation of the
probability of all frames of subject j, which is denoted as:

∑EC
N

P= 1 ( ),j

i

N

i
j( )

=1

( )

(1)

where N is the number of frames of subject j.
If EC j( ) exceeds 50%, then the subject j may be indicated as having

celiac disease. If EC j( ) is less than 50%, then the subject j is likely to be
normal, without celiac disease.

3. Results

Since the frames containing a large field of opaque extraluminal
fluid or air bubbles have been removed using the pre-selection
criterion, the number of final frames for each subject in the testing
set were not equal. To make the bar chart in Fig. 2 more consistent and

Fig. 1. Overview. The top left panel is the illustration of input images. The top middle panel is the cropped image. The top right panel illustrates the rotated images. The bottom left
panel illustrates the GoogLeNet [13]. The bottom right panel is the data and labels prepared for training the GoogLeNet.
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more comprehensive, the number of frames is shown in a percentage
form. For each subject, the probability of the percentage of frames is
plotted in the bar chart. The horizontal axis of the bar chart is a certain
interval of probability of celiac disease. In the bar chart, a 10 in
horizontal axis means the probability interval is [0, 10)%, a 20 means
[10, 20)%, and so on. For the last one, 100 indicates that the probability
is 100%. The vertical axis designates the percentage of frames that fall
into a certain range of probability. The bar charts of the five celiac
disease patients and five control subjects are listed in Fig. 2. Fig. 2a-e
are five celiac disease patients with celiac disease of Marsh type IIIA -
IIIC. Fig. 2f-j are five control subjects.

As is evident in Fig. 2, for patients Fig. 2a-e, more than 40% of the
frames have the probability of 100%. In Fig. 2b, the probability of 100%
even exceeds 80%. In Fig. 2b and e, this number is over 60%. This may
indicate our method has a good sensitive to detect small intestinal
pathology, likely from villous atrophy, in celiac disease patients.
Moreover, there are only a small number of frames with the probability
of interval [10, 100)% for celiac disease patients, except the one in
Fig. 2d.

In contrast, the probability of interval [0, 10)% accounts for the
majority for the control subjects in Fig. 2f-j. Although the minority
frames are classified as celiac disease, these bar charts are evidently
different from the ones with celiac disease, which can be subsequently
verified by the EC calculation.

The evaluation confidence for each subject in the testing set is listed
in Table 1. As discussed, an EC value over 50% is considered suspect
for having pathology. In Table 1, the EC of the patients from patient 1
to patient 5 correspond to the bar charts in Fig. 2a-e. The EC of the
control subjects from subject 1 to subject 5 correspond to bar charts in
Fig. 2f-j. The EC of the celiac disease patients ranges from 57.53% to
86.55%, while the EC of the control subjects ranges from 9.58% to
31.79%. For celiac disease patients and control subjects, the EC values
are significantly different, so that it is easy to distinguish control
subjects from celiac disease patients. In order to confirm our hypoth-
esis, a t-test performed on the EC calculations is listed in Table 2.
Notice that the two sample mean values (variance) are 68.91(124.42)

and 22.83(99.94). The two-tailed calculated t-statistic is 2.78 and the
p-value for this test is p=0.005. Since the p-value is less than 0.05, this
means that the EC values of the celiac disease patients versus control
subjects are significant.

In order to further estimate the generalization ability of the deep
network, a 7-folds cross-validation is performed on the 11 celiac
disease patients and 10 control subjects. The 11 celiac disease patients
and 10 control subjects are split into 7 mutually exclusive sets
S S S, ,…,1 2 7, three for each set. Each set contains at least one celiac
disease patient and one control subject. For each fold, 6 sets of samples
are used for training, the rest one is for testing. We conducted the
experiments on K40 platform with cuDNN enabled. The average
forward-backward takes 1327.56 ms and the average forward takes
441.98 ms. The EC values are shown in Table 3, where P means celiac
disease patient and C means control subject. From Table 3, the average
sensitivity and specificity by cross validation are also 100%.

4. Discussion

In this study, we introduce a deep learning network that could be
used for evaluation of celiac disease-associated villous atrophy. The
celiac disease is characterized by duodenal folds, mucosal fissures,
scalloping of folds, grooves or crevices, visible submucosal vessels,
micronodules in the duodenal bulb and a mosaic pattern in the small
bowel mucosa. [2] The lesions are visibly different on capsule endo-

Fig. 2. Bar charts of probability of celiac disease by percentage of images. The bar charts of five celiac disease patients are in a-e, the ones of five control subjects are in f-j.

Table 1
Evaluation Confidence for Each Subject.

Patients patient 1 patient 2 patient 3 patient 4 patient 5

EC 57.53% 86.55% 67.68% 61.77% 71.03%
Controls subject 1 subject 2 subject 3 subject 4 subject 5
EC 29.52% 9.58% 28.58% 14.70% 31.79%

Table 2
t-test of EC (%).

Mean 68.91 22.83
Variance 124.42 99.94
Hypothesized Mean Difference 0
t Critical two-tail 2.78
P T t( ≤ ) two-tail 0.005

Table 3
The EC values of 7-fold cross-validation.

Training Set Testing Set EC (%)

S1, S2, S3, S4, S5, S6 S7 (P P C, ,10 11 10) 79.32, 68.46, 27.05
S1, S2, S3, S4, S5, S7 S6 (P C C, ,9 8 9) 81.77, 41.26, 31.12
S1, S2, S3, S4, S6, S7 S5 (P P C, ,7 8 7) 67.43, 50.06, 47.15
S1, S2, S3, S5, S6, S7 S4 (P C C, ,6 5 6) 51.69, 29.54, 17.75
S1, S2, S4, S5, S6, S7 S3 (P P C, ,4 5 4) 52.73, 80.44, 18.20
S1, S3, S4, S5, S6, S7 S2 (P C C, ,3 2 3) 70.68, 6.69, 39.21
S2, S3, S4, S5, S6, S7 S1 (P P C, ,1 2 1) 55.98, 77.86, 25.04
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scopy, which therefore makes the deep learning networks suitable for
detecting the visual differences of celiac disease patient data versus
normal subject data via computerized means. The intermediate para-
meters of the network is inherited from that of the pre-trained model,
whose intermediate parameters are initialize to sensitive values. We
continue the network training by the capsule endoscopy frames. This is
also coherent with the success of several deep learning algorithms that
provide some such guidance for intermediate representations, then the
networks are supervised trained [19]. Due to the great power of deep
learning network, which is able to learn to extract high-level features
automatically, even a subtle visual change in the small bowel mucosa of
celiac disease patients can be detected. Thus, our current study
achieves a sensitivity of 100% and a specificity of 100% at patient level
in the testing set.

In Fig. 2, the majority of frames of all the subjects fall on the
probability interval [0, 10)% and 100%, which means our deep learning
network is very confident that a frame has (or has not) a visual
difference detected as lesions. A minority of frames fall on the interval
[10, 100). This is because even the same celiac disease patient, different
regions of small bowel mucosal can manifest a different degree of lesion
severity.

Another phenomenon is that the EC values of the patients ranged
from 57.53% to 86.55%. For example, the EC of patient 1 is only
57.53%. We manually checked throughout the assessment of duodenal
biopsies. In most biopsies, the severity level of villous atrophy of this
patient is subtle and classified as Marsh IIIA (patients with dermatitis
herpetiformis), according to the Marsh criterion. Then we also checked
the assessment of duodenal biopsies of patient 2, whose EC value was
86.55%. We found that, in most biopsies, the severity level of villous
atrophy of this patient was type Marsh IIIC (complete villous atrophy).
Therefore, the EC calculation may also be able to quantify the severity
level of villous atrophy. This requires further investigation on addi-
tional capsule endoscopy data in the future. To conduct this experi-
ment, the training data can be classified into 6 types according to the
biopsies and serological testing results. The 6 types are Marsh 0, I, II,
IIIA, IIIB, IIIC. The automatic quantitation of Marsh's types is
planning for future works.

A variety of techniques have been well developed for computer
vision and image processing [20]. Our result is better then the relative
studies. For example, Ciaccio et al. [4] proposed threshold and
incremental methods, in which two classifiers, the threshold one and
incremental one, were developed using 6 celiac and 5 control patients
data as exemplars, and tested on 5 celiacs and 5 controls. In these
patients the diagnostic biopsy, taken while on a regular diet, showed
Marsh grade II-IIIC lesions, except in one patient with hemophilia who
did not undergo endoscopy and biopsy. The sensitivity and specificity
of five regions, i.e. duodenal bulb, distal duodenum, jejunum, proximal
ileum and distal ileum, by threshold methods were 80% and 96%,
respectively, while the sensitivity and specificity of five regions by
incremental methods were 88% and 80%, respectively. The automata
polling method was developed by Ciaccio et al. [21]. Nine celiac patient
data with biopsy proven villous atrophy and seven control patient data
lacking villous atrophy were used for analysis. Celiac disease patients
had biopsy-proven with scores of Marsh II - IIIC except one hemophi-
liac patient. Four small intestinal levels (duodenal bulb, distal duode-
num, jejunum, and ileum) were analyzed. The overall sensitivity of
these levels was 83.9%, while the specificity was 92.9%. Different from
the previous studies, the present study need not to manually differ-
entiate the small intestine levels, so the statistic is subject-wise rather
than level-wise.

Some meta-analyses were performed in the literature. Three
independent studies were investigated in [22]. In the study by
Petroniene et al. [23], 10 celiac disease patients and 10 controls were
involved. The sensitivity and specificity by two very experienced
gastroenterologists’ reading of the videos were 100%. Other two less
experienced reader achieved less sensitivity. The overall sensitivity and

specificity were 70% and 100%. The study by Hopper et al. [24] had
sensitivity of 85% and specificity of 100% by one observer. The other
study by Rondonotti et al. had four observers, and the sensitivity and
specificity were 87.5% and 90.9% by inter-observers agreement in the
assessment of mucosal lesions. Another meta-analysis was performed
by Rokkas and Niv [25]. A total of 166 individuals included in six
studies were pooled. The overall sensitivity was 89% and specificity was
95%. Comparing to manual diagnosis by gastroenterologists or
freshers, the deep network achieved competitive results. Thus, compu-
ter-aided methods by deep networks may greatly reduce the workload
of gastroenterologists to analyze the capsule endoscopy videos.

The cross validation experiment demonstrates the generalization
ability of the networks. We think there are several reasons refer to this
issue. First, the idea behind Inception architecture is to optimize the
local sparse structure in the convolutional network and cover the
available dense components [13]. Second, the dropout [26] is a typical
way to prevent over-fitting, which remain essential in GoogLeNet
though absence of fully connected layers. Third, the batches of
examples help estimating the gradient loss over the training set and
computation over batches is more effective than individual one [27].
Forth, the auxiliary classifiers help to increase the backward gradient
by connecting to the intermediate layer. These classifiers amplify the
total loss by adding their weighted loss to the final one.

However, the capsule endoscopy is a relatively new procedure, and
particularly, the number of studies of assessment of celiac disease using
capsule endoscopy is limited. The number of video clips collected for
this studies is relatively small, so a larger data set would be required for
validation in a prospective double-blinded study. Yet, in order to
confirm celiac disease, positive serologic markers and a biopsy would
still be need. The gold standard for the diagnosis of celiac disease
remains the assessment of duodenal biopsies using standard endo-
scopy, after the serological testing result and is used for confirmation.
The ability for obtaining biopsies via capsule endoscopy is under
development and may be released in the future [2].

5. Conclusions

There are visual differences in the image frames of celiac disease
patients versus controls, which can be automatically learned via deep
learning techniques. The deep learning network can be used to
distinguish the frames of celiac disease patients from those of control
subjects. A quantitative measurement for severity level, which we
termed evaluation confidence (EC), was introduced in this study. The
results according to this evaluation confidence were found to be
promising, achieving a 100% level of sensitivity and specificity in the
testing set. This computer-aided technique may therefore be helpful to
eliminate the bias of the clinician during evaluation for the presence of
mucosal villous atrophy and also broaden the applicability of capsule
endoscopy to other etiologies for real-time assessment. Automatic
detection of Marsh types is being developed in further studies by
collecting and analyzing larger numbers of video clips from celiac
patients and control subjects.
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