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Abstract

Background: Dominant frequency (DF) analysis of videocapsule endoscopy images
is a new method to detect small intestinal periodicities that may result from
mechanical rhythms such as peristalsis. Longer periodicity is related to greater image
texture at areas of villous atrophy in celiac disease. However, extraneous features and
spatiotemporal phase shift may mask DF rhythms.

Method: The robustness of Fourier and ensemble averaging spectral analysis to
compute DF was tested. Videocapsule images from the distal duodenum of 11 celiac
patients (frame rate 2/s and pixel resolution 576 × 576) were analyzed. For patients 1,
2, ... 11, respectively, a total of 10, 11, ..., 20 sequential images were extracted from a
randomly selected time epoch. Each image sequence was artificially repeated to 200
frames, simulating periodicities of 0.2, 0.18, ..., 0.1Hz, respectively. Random white noise
at four different levels, spatiotemporal phase shift, and frames with air bubbles were
added. Power spectra were constructed pixel-wise over 200 frames, and an average
spectrum was computed from the 576 × 576 individual spectra. The largest spectral
peak in the average spectrum was the estimated DF. Error was defined as the
absolute difference between actual DF and estimated DF.

Results: For Fourier analysis, the mean absolute error between estimated and actual
DF was 0.032 ± 0.052Hz. Error increased with greater degree of random noise
imposed. In contrast, all ensemble average estimates precisely predicted the
simulated DF.

Conclusions: The ensemble average DF estimate of videocapsule images with
simulated periodicity is robust to noise and spatiotemporal phase shift as compared
with Fourier analysis. Accurate estimation of DF eliminates the need to impose
complex masking, extraction, and/or corrective preprocessing measures.

Keywords: celiac disease, ensemble average, Fourier transform, small intestine, spec-
tral analysis

Background
Celiac disease is an autoimmune disease which often manifests as villous atrophy in

the small intestinal lining or mucosa [1-3]. The result can be fissuring and mosaic pat-

tern of the mucosal surface and scalloped appearance of the small intestinal mucosal

folds, which result in textural changes that are often visually evident in the acquired

videocapsule images. During quantitative analysis, extraneous features including air

bubbles and opaque fluids in the small intestinal lumen, as well as random imaging

noise, are ubiquitous in videocapsule data [4-6]. These distorting factors can in part be
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remediated by their delineation followed by masking or extraction; however such sys-

tems can be complex, computationally unwieldy, and their sensitivity is somewhat

modest [7]. Gastrointestinal motility can be altered in untreated celiac disease [1-3],

suggesting the possibility that the frequency content of frame-to-frame changes in

videocapsule image texture might vary in these patients. Longer periodicity in the fre-

quency spectra would possibly be indicative of slower motility, while shorter periodicity

may suggest faster motility [8]. To validate such measurements, it should be deter-

mined whether known, periodic changes in videocapsule image frames, in the presence

of image degradation, can be detected using methods of spectral analysis.

The dominant frequency (DF) is useful to estimate the electrical activation rate of

excitable media [9,10]. It is defined as the fundamental frequency with greatest spectral

power in the physiologic range of interest. The standard method for detecting the DF

includes a preprocessing step in which the signal is bandpass filtered, followed by sig-

nal rectification, and finally by low pass filtering. However, this manipulation distorts

the signal and can cause error in DF estimation [11-13]. Furthermore, it is not very

robust to phase and random noise [14,15]. Optimization of filter parameters can

improve DF estimation by enabling more spectral power associated with periodic com-

ponents to pass through the filter [15]. Alternatively, a new method based on ensemble

averaging can be utilized to estimate DF [14,15]. This new method does not distort the

signal prior to quantitation, because preprocessing measures are not imposed.

In this study, spectral analysis of videocapsule image series was used to determine

whether synthesized periodicity could be accurately detected in the presence of phase

and random noise, and when extraneous features are imposed. Validation would sug-

gest that spectral analysis of videocapsule image series can be used to detect repetitive

patterns in gastrointestinal motility that are potentially important to diagnosis and

treatment of celiac disease and other gastrointestinal diseases associated with small

intestinal lesions.

Methods
A. Clinical Procedure and Data Acquisition

All patients were evaluated at Columbia University Medical Center, New York, from

May 1, 2008 to July 31, 2009. Retrospective videocapsule endoscopy data was obtained

from 11 celiac patients on a regular diet or within a few weeks of starting a gluten-free

diet. In these patients the diagnostic biopsy, taken while on a regular diet, showed

Marsh grade II-IIIC lesions. Informed consent was obtained prior to videocapsule

endoscopy. Indications for this procedure included suspected celiac disease or Crohn’s

disease, iron deficiency anemia, obscure bleeding, and chronic diarrhea. All patients

had serology- proven and biopsy-proven celiac disease. These patients were subse-

quently evaluated by videocapsule endoscopy because they were considered to have

complicated disease with symptoms such as abdominal pain unexplained by previous

evaluation. Excluded were patients under 18 years of age, those with a history of or

suspected small bowel obstruction, dysphagia, presence of pacemaker or other electro-

medical implants, previous gastric or bowel surgery, serum IgA deficiency, pregnancy,

and nonsteroidal anti-inflammatory drug (NSAID) use during the previous month.

Only complete videocapsule endoscopy studies, reaching the colon, were used for
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analysis. The retrospective analysis of videocapsule endoscopy data was approved by

the Internal Review Board at Columbia University Medical Center.

The PillCamSB2 videocapsule (Given Imaging, Yoqneam, Israel) was utilized to

obtain the small bowel images in the study groups [16]. The system consists of a recor-

der unit with cradle and harness, battery pack and charger, antenna lead set, and real-

time viewer. The capsule acquires two digital image frames per second and is a single-

use pill-sized device [16]. For each patient undergoing the procedure, abdominal leads

were placed on the upper, mid, and lower abdomen, and a belt containing the data

recorder and battery pack was strapped about the waist. All subjects swallowed the

videocapsule with radio transmitter in the early morning with approximately 0.2 liters

of water after a nighttime fast without bowel preparation. Subjects were allowed to

drink water 2 hours after ingesting the capsule, and to eat a light meal after 4 hours.

The recorder received the radioed images that were transmitted by the videocapsule as

it passed through the gastrointestinal tract. The capsule reached the cecum in all parti-

cipants from which retrospective data was used in this study. The belt data recorder

was then removed, and the data was downloaded to a HIPAA-compliant PC-based

computer console with proprietary software. Videos were reviewed and interpreted by

three experienced gastroenterologists. Videoclips to be used for further quantitative

analysis were then exported to external media without patient identifiers. The video-

clips were 200 frames each and were acquired from the distal duodenum.

B. Creation of Synthetic Sequences for Analysis

From each RGB color videoclip, grayscale images (256 brightness levels, 0 = black, 255

= white) with an image resolution of 576 × 576 pixels, were extracted using Matlab

Ver. 7.7, 2008 (The MathWorks, Natick MA). One sequence of frames was extracted

from each videoclip per patient. Table 1 shows the relationships. The patient number

is noted in the left-hand column. The number of image frames extracted from each

videoclip for this patient is given in the middle column. These frames were repeated to

form a 200 frame sequence. Thus the total number of repeating sequences, sequence

length = w, is:

n = 200/w (1)

Table 1 Simulated Periodicity from Patient Data

Patient # frames w frequency(Hz)

1 10 0.2

2 11 0.182

3 12 0.166

4 13 0.154

5 14 0.142

6 15 0.134

7 16 0.126

8 17 0.118

9 18 0.112

10 19 0.106

11 20 0.1
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The simulated frequencies of these sequences, shown in the right column, was calcu-

lated using:

f = sample rate/w

= 2./w
(2)

C. Synthetic Sequence Degradation

Each of the synthetic image sequences was corrupted using the following techniques:

1. Temporal phase noise: the 200 frame series was altered by removing up to 4

frames from the beginning or end of one of the repeating series comprising the

sequence, and appending it to another series. This was done three times at random in

each 200 frame series. For example, suppose the period of a sequence S is 10 image

frames:

S = M1, M2, M3, . . . . M10, M1, M2, M3, . . . . M10, . . . . (3)

where S is comprised of 200 total images M, and the bold font in M denotes that it

is a matrix with dimension 576 × 576 pixels. Thus the series of 10 images are repeated

20 times to form a set of 200 images. An example of temporal phase shift by ± 2 that

would create an altered sequence S’ is:

S′ = M3, M4, M5, M6, ..., M10, M1, M2, M3, .... M10, M1, M2, M1, M2, M3, .... M10, M1, M2,

M3, .... M10, M3, M4, M5, M6, .... M10, M1, M2, M3, .... M10, M1, M2, M3, .... M10, M1, M2, M1, M2,

M3, .... M10, M1, M2, M3, .... M10, M1, M2, M3, .... M10, M2, M3, M4, M5, M6, .... M10, M1, M2,

M3, .... M10, M1, M2, M3, .... M10, M1, M1, M2, M3, .... M10, M1, M2, M3, .... M10, ...

(4)

where phase shifts of one or two images occurred during periods 1-3, 5-8, and 11-14

in Eq. 4.

2. Spatial phase noise: each image in the 200 frame series was altered using a row-

by-row pixel rotation of up to 20 pixels. The degree of pixel rotation was the same for

each row in a particular image, but was varied randomly, in the range 0 to 20, from

one image to the next. Thus for example, the original image frame can be written as:

M =

⎡
⎢⎢⎢⎣

m(1 : 576)

m(1 : 576)

· · ·
m(1 : 576)

⎤
⎥⎥⎥⎦ (5)

where m is a row vector of dimension 576 and the matrix M has 576 columns. If the

row vectors are phase shifted by +5, then the spatially phase shifted image M’ is given

by:

M′ =

⎡
⎢⎢⎢⎣

m(6 : 576, 1 : 5)

m(6 : 576, 1 : 5)

· · ·
m(6 : 576, 1 : 5)

⎤
⎥⎥⎥⎦ (6)

3. Addition of random white noise: a series of × image frames were removed from

the end of the 200 frame series and replaced with × white noise frames, where the

number of frames removed was varied from × = 0 frames (0%), 50 frames (25%), 100

frames (50%), 150 frames (75%), and 180 frames (90%). For example for sequence S
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with periodicity = 10, and when 180 noise frames (90%) are substituted into the

sequence, then the altered sequence S’ is in this case:

S′ = M1, M2, M3, . . . . M10, M1, M2, M3, . . . M10, N1, N2, N3, . . . N180 (7)

where each matrix N is a random noise frame different from all other noise frames.

4. Addition of air bubbles: seven images were randomly removed from the 200 frame

series and replaced with an image B composed primarily of air bubbles that did not

belong in the series. An example of such an altered sequence S’ is:

S′ = M1, M2, M3, M4, B, .... M10, M1, M2, B, .... M10, M1, M2, M3, B, .... M10, .... M1,

M2, M3, .... M10, M1, M2, M3, M4, M5, M6, B, .... M10, M1, B, M3, .... M10, .... M1, M2, M3, ....

M10, B, M2, M3, .... M9, B, M1, M2, M3.... M10, ....

(8)

where frames B containing extraneous air bubbles are substituted at random into the

200 frame sequence.

Frequency spectra were calculated for each 200 frame sequence using the methods of

sequence degradation as listed above. The four different levels of random white noise

frames were added in separate trials.

D. Spectral Analysis

Both the Fourier and ensemble power spectral methods were used for frequency calcu-

lation [9-15,17]. For analysis, each pixel location in the sequence of 200 images was

treated as a distinct signal. Each of these 576 × 576 = 331776 signals was first set to

mean zero. Then the power spectrum (Fourier or ensemble method) was computed for

each, and the average frequency spectrum computed by summing the 331776 indivi-

dual power spectra and dividing by 331776 was used for further analysis. The tallest

peak in this spectrum was considered to be the dominant frequency. In accord with

another study [8], these measurements can alternatively be expressed by the dominant

period (DP), which is defined as:

DP = 2./DF (9)

where 2./s is the frame rate, the units of DF are Hz, and the units of DP are seconds.

All calculations were done on a PC-type laptop computer using the Intel Visual For-

tran Compiler 9.0 Build Environment for 32-bit applications (Intel Corporation, Santa

Clara, California, 2005). For Fourier spectral calculation, the 200 point data array was

first smoothed using a Hann window. The windowed data was then padded with zeros

to form an array 1024 points to achieve a final resolution of 2./1024 = 0.002Hz. The

Fast Fourier Transform (FFT) was computed using subroutine ‘four1’ provided by

Numerical Recipes in Fortran 77 [18], and the power spectrum was generated from the

magnitude of the real and imaginary parts of the FFT components, and plotted versus

frequency. This radix-2 implementation, which is applicable to real data arrays of

length 2N, is widely used in the literature, although it is not the most efficient FFT

code [19]. In a previous gastrointestinal study, the DP has been observed in the range

1-20 seconds [8]. Thus for Fourier analysis, the spectral range to detect the DF/DP

was selected as 0.05Hz (period = 20 seconds) to 0.67 Hz (period ~ 1 second). This

implementation did not include preprocessing by bandpass filtering, lowpass filtering,

and rectification.
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Ensemble average spectral analysis was also coded in Fortran, and has been described

in detail elsewhere [8,14,15,17]. Briefly, the mean level is removed from each 200 pixel

sequence as for Fourier analysis. As for Fourier analysis, ensemble averages are com-

puted from 0.05Hz (periodicity of w = 40 frames) to 0.67Hz (periodicity of w = 3

frames). For simplicity, calculations were only done at integer values of w; thus only 38

points were computed for ensemble spectral analysis (average resolution of 0.62Hz/38

= 0.016Hz). For any particular pixel trace pij, i = 1,576 and j = 1,576, from 1 to 200

frames, the ensemble average is:

eij(w) = 1/n · [p
ij
(1 : w) + p

ij
(w+1 : 2w) + . . . + p

ij
(nw-w+1 : nw)] (10)

where the underline denotes a vector quantity and n is computed as in Eq. 1. The

power Pij (w) of each eij (w) is then calculated. The entire procedure is repeated for all

pixel traces pij. The average of Pij (w) for all i and j is the average power in the image

P(w) at period w. P(w) is given by:

P(w) = 1/D2w
∑

ij
[eij (w) · eij(w)] (11)

where D is the image dimension (= 576), ‘·’ denotes the inner product of the two

vectors and i = 1 to n, j = 1 to n. The power computed by Eq. 11 is not equivalent to

averaging the grayscale level of all pixels in an image and computing the spectrum

from the ensemble averages of mean image grayscale level. That is:

P(w) = 1/D2w
∑

ij
[eij(w) · eij(w)] �= 1/D2w

∑
ij

eij(w) ·
∑

ij
eij(w) (12)

The average power P(w) is then multiplied by √n and plotted versus frequency f, as

given in Eq. 2. The √n term is a function of w and is computed using Eq. 1. It partially

levels the spectral baseline by accounting for the falloff in random noise power as the

number of summations n increases. Lastly, linear regression was used to further level

the spectral baseline. The DF was selected as the tallest peak in the range 0.05 -

0.67Hz for both Fourier and ensemble power spectra.

Results
A. Effect of Spatiotemporal Phase Shift and Random White Noise on Image Series

To show how spatiotemporal phase shift and random white noise affect image

sequences, results from celiac patient 1 (w = 10, Table 1) with selected image degrada-

tion is shown in Figure 1. In each panel, the result of ensemble averaging of every 10th

frame beginning with frame 1 (average of frames 1, 11, ..., 191) is depicted. In other

words, the first element of the ensemble average eij (10) as given by Eq. 10 is plotted

for all pixels i and j. Panel A shows the average without image degradation. Numerous

mucosal folds, small mucosal surface abnormalities, and extraneous substances are evi-

dent, as is typical in celiac videoclips obtained from the distal duodenum. A random

temporal shift of ± 1 to ± 5 frames was then imposed and shown in panels 1B to 1F,

respectively. As a result of the temporal phase shift, the images particularly in panels

1D to 1F increasingly morph to resemble other images that were present in the ten

frame series. However, features from the original image having marked contrast as

compared to the background tend to be retained - for example as noted by the aster-

isks in each frame. Additionally, the result after imposition of air bubble frames is
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shown in panel F. Faint air bubbles are evident within the image, particularly near the

center. Spectral analysis of the series would be expected to readily detect the syntheti-

cally-derived ten frame period without image degradation being present (panel A), but

as progressive degradation occurs (panels 1B through 1F), correct spectral representa-

tion would be anticipated to become more challenging.

For the same series as shown in Figure 1, image degradation of types 1 and 3

described in the Methods section were then added (temporal phase shift of up to ± 4

frames and random noise for × = 0 to 150 frames. The Fourier power spectra are

shown in Figure 2, with the random noise level given at top left. The fundamental fre-

quency at 0.2Hz is not very evident as there is a split (triplet) and at the 0.4Hz and

0.6Hz harmonics. Several split harmonic peaks have greater energy than the actual DF

at 0.2Hz. As more random white noise frames are added (top left in each panel) the

triplets diminish in amplitude and merge (1C to 1D). In panel 1D, the actual DF at

0.2Hz is unrecognizable. Analysis of the same data and noise levels using ensemble

averaging is shown in Figure 3. In each panel a dominant peak at 0.2Hz is evident.

Subharmonics and the superharmonic at 0.4Hz are present but lesser in value. There

are no split peaks. Because of the f = 1/w relationship, the frequency resolution is not

uniform (see Methods); however detection of the DF is unaffected.

Examples when image degradation types 2 and 3 (see Methods) are imposed are

depicted in Figure 4 using the same videoclip series as in Figure 1 for ease of compari-

son (celiac patient 1, Table 1). Panel 4A shows the result when there is no image

degradation (same as Figure 1A). Spatial phase noise was added to panels 4B to 4F by

imposing a maximum rotation of 20 pixels to the 20 summed images. Additionally,

successively increased white noise content, with × = 10, 50, 100, 150, and 180 noise

Figure 1 Videocapsule simulation with random and temporal phase noise and air bubbles
imposed. A. Average of frames 1, 11, ..., 191 before adding phase noise. B-F. Average of frames 1, 11, ...,
191 when phase noise is added to the entire 200 frame series. The temporal phase shift is ± 1, 2, 3, 4, and
5 image frames in panels B-F respectively. In panel F, air bubbles are also imposed.
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Figure 2 Fourier power spectra when random and temporal phase noise is imposed. The random
noise magnitude is indicated at top left in each panel and the phase noise is the same for each panel.
The actual DF is 0.2 Hz (DP = 5s). However, this peak is split in panels A, B, and C and is eliminated
altogether in panel D.

Figure 3 Ensemble power spectra random and temporal phase noise is imposed as in Figure 2. In
each ensemble power spectrum, the dominant frequency at 0.2Hz (DP = 5s) is the highest peak. As
compared with the Fourier power spectra in Figure 2, the ensemble power spectra have no split peaks
(panels A, B, and C) and are not degraded by high noise levels (panel D). Unlike for the Fourier power
spectra of Figure 2, random and temporal phase noise at these levels have little effect on any of the
details in the ensemble power spectra.
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frames substituted at the end of the sequence, are provided in panels 4B to 4F respec-

tively. Figure 4F only slightly resembles the original image (Figure 4A).

Fourier spectra of the sequence with period w = 10 were also generated when all four

image types of degradation were done (see Methods): temporal phase noise, spatial

phase noise, additive random noise (value at upper left in each panel), and air bubble

frames are shown in Figure 5. Random noise up to 180 frames (panel 5D) was used to

show the dramatic change in the spectrum at this level. At lower additive noise levels

(Figure 5A and 5B) the harmonic peaks are split as in Figure 2. At higher random noise

levels the split peaks merge, but the DF becomes unrecognizable (5D). Analysis of the

same data and noise levels using ensemble averaging is shown in Figure 6. In each panel

a dominant peak at 0.2Hz is evident. Subharmonics and the superharmonic at 0.4Hz are

present but lesser in value than the fundamental. There are no split peaks.

B. Summary Statistics

In Table 2 the results of tests to detect the DF at four noise levels × = 0, 50, 100, and 150

(see Methods) are shown. The rows indicate patient number, the DP and DF of the simu-

lation, the Fourier estimate of DF with added random noise frames × from 0 to 150, the

mean and standard deviation in the Fourier estimation, the difference between the mean

Fourier estimate and actual DF, and the mean and standard deviation in the ensemble

average estimation. Due to the presence of split peaks, diminished peak height, and noise

floor encroachment, only one of the Fourier estimates in Table 2 is precisely correct. In

two cases (patients 5 and 6) the second Fourier harmonic was large and the fundamental

frequency was nonexistent. The absolute difference (i.e. error) between the mean Fourier

estimate and the actual frequency value (F dif) was 0.032 ± 0.052Hz which on the average

Figure 4 Videocapsule simulation with random noise and spatial phase shift (jitter) imposed. A.
Average of frames 1, 11, ..., 191 before adding random noise and jitter. B-F. Average of frames 1, 11, ..., 191
when spatial frame shift is used to impart jitter. In all panels B-F, jitter is caused by rotation of each row of
pixels by 20 pixels, White noise was present in 0, 25, 50, 75, and 90% of frames used to construct panels B-
F, respectively.
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Figure 5 Fourier power spectra of the average of frames 1, 11, ..., 191 when spatial phase shift,
imposed frames with air bubbles, and additive random noise in 0, 25, 75, and 90% of frames in
panels A, B, C, and D, respectively. The actual DF is 0.2 Hz (DP = 5s). As in the Fourier power spectra of
Figure 2, split peaks occur about the dominant frequency (panels A and B), and spectral peaks are
completely absent at the highest white noise level (panel D). Although there is a peak near the actual
dominant frequency in panel C, it is blunted and shifted.

Figure 6 Ensemble power spectra for same noise levels as in Figure 5. In each panel the tallest peak
is coincident with the actual dominant frequency at 0.2Hz. Most of the other details of the spectra are
unchanged from one spectrum to the next even though there is increasing phase and random noise
added.
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is a 21% difference when using 0.15Hz as a mean frequency (Table 1). In contrast, all of

the ensemble average estimates correctly predicted the actual DF of the simulation thus

the standard deviation was zero and the error (E dif) was also zero.

Discussion
A. Synopsis

In this study, pixel-by-pixel spectral analysis was introduced for videocapsule image

quantification of the small intestine. It was shown that when spatiotemporal phase

noise, random white noise, and air bubbles are imposed on videocapsule series

acquired from the distal duodenum of celiac patients (Figures 1 and 4), spectral analy-

sis using the ensemble averaging method was useful to detect the dominant frequency

(Figures 3 and 6). In contrast, the Fourier method suffered from split peaks (Figures

2A, B, and 2C and 5A, B and 5C) as well as a diminishment of peak height to levels

encroaching the noise floor (Figures 2D and 5D). These simulations suggest that the

ensemble averaging approach can detect actual periodicities in videocapsule image ser-

ies more robustly as compared with the Fourier method, thus reducing the need for

complex masking, extraction, and/or corrective preprocessing measures. Since prior

results suggest a relationship between long periodicity and regions of villous atrophy

[8], accurate measurement of the dominant periodicity will be important in future

efforts to correlate these parameters to location in the small intestine, and to deter-

mine their actual relationship to small intestinal motility.

B. Analysis of Videocapsule Endoscopy Images

Endoscopy of the small intestine is used for detecting villous atrophy, a common mani-

festation of untreated celiac disease, which is confirmed by analysis of biopsy

Table 2 Summary Statistics of DF Measurement

Pat. # DP DF X = 0 X = 50 X = 100 X = 150 Fourier MN F dif Ensemble MN E dif

1 10 0.200 0.176 0.174 0.174 0.186 0.178 ± 0.006 0.022 0.200 ± 0.0 0.0

2 11 0.180 0.174 0.172 0.172 0.184 0.176 ± 0.006 0.004 0.180 ± 0.0 0.0

3 12 0.167 0.174 0.166 0.178 0.174 0.173 ± 0.005 0.001 0.167 ± 0.0 0.0

4 13 0.154 0.174 0.174 0.168 0.174 0.172 ± 0.003 0.002 0.154 ± 0.0 0.0

5 14 0.143 0.266 0.266 0.266 0.266 0.266 ± 0.000 0.123 0.143 ± 0.0 0.0

6 15 0.133 0.252 0.254 0.252 0.277 0.259 ± 0.012 0.144 0.133 ± 0.0 0.0

7 16 0.125 0.129 0.131 0.133 0.119 0.128 ± 0.006 0.006 0.125 ± 0.0 0.0

8 17 0.118 0.121 0.123 0.125 0.117 0.122 ± 0.003 0.001 0.118 ± 0.0 0.0

9 18 0.111 0.115 0.117 0.115 0.106 0.113 ± 0.005 0.002 0.111 ± 0.0 0.0

10 19 0.105 0.109 0.111 0.174 0.184 0.145 ± 0.040 0.040 0.105 ± 0.0 0.0

11 20 0.100 0.106 0.106 0.100 0.090 0.101 ± 0.008 0.001 0.100 ± 0.0 0.0

MN – – 0.163 0.163 0.169 0.171 – 0.032 – 0.0

SD – – 0.055 0.055 0.052 0.061 – 0.052 – 0.0

DP - actual dominant period in units of number of frames.

DF - actual dominant frequency in units of Hz.

Fourier - the Fourier spectral estimate of DF.

MN = mean and standard deviation

F dif - absolute difference between mean Fourier estimate of DF and the actual frequency value.

E - the ensemble average spectral estimate of DF.

E dif - absolute difference between mean ensemble estimate of DF and the actual frequency value.

X = number of noise frames imposed on the series.
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specimens acquired during the procedure [20]. Currently, the only treatment for celiac

disease patients that can restore the intestinal villi to the healthy state and also elimi-

nate systemic symptoms is a lifelong gluten-free diet [2,20]. Yet, months on the diet

are needed to completely restore the villi, and in some patients only partial restoration

occurs, or there may be no restoration at all. In a prior quantitative study in which vil-

lous atrophy was detected, duodenal features were classified using Fourier filters and

magnifying endoscopic images [21]. The method is useful for quantitation except in

regions lacking visible change where villous atrophy is still present. Our group has

investigated textural properties of images from the small intestinal mucosa in celiac

disease [22]. The variation in grayscale brightness can be used as an estimate of tex-

ture. It was found over 200 image sequences that celiacs had significantly greater tex-

ture even in distal portions of the small intestine (jejunum and ileum) as compared

with controls. This suggests the possibility that villous atrophy is widespread in the

intestinal lumen in untreated celiac patients, but may be below threshold for visual

detection. More recently, frequency analysis was proposed to detect periodic oscilla-

tions in frame-to-frame brightness variation that may be related to small intestinal

motility [8]. However ambient conditions such as camera angle and illumination may

have affected the measurements, since average image brightness level, rather than a

pixel-by-pixel analysis, was used to generate the frequency spectrum [8]. By using

pixel-level detail to generate spectra, as in the present study, robustness to extraneous

influences is likely enhanced, because periodically occurring image features that are

spatially related are not masked by the averaging process.

Although our studies thus far have been limited, for simplicity, to converting color

videocapsule images to 256-level grayscale for quantitative analysis, abnormal patterns

can also be detected in color space using nonlinear methods [23]. It was shown that

the green component of RGB color contains much of the detail for detection of small

intestinal lesions of the mucosa. Use of a specific color (green, red, or blue) rather

than grayscale may therefore be efficacious to improve detection of periodicities with

our algorithm, the subject of future work. This study was a first step toward the ulti-

mate goal of the development of computerized quantitative videocapsule analysis that

will be used in real time. To meet this goal, any quantitative algorithm must be loaded

to a dedicated computer console where videocapsule clips are displayed for analysis by

the gastroenterologist. The output would be a frequency spectrum that would be

updated in real time with the dominant frequency and period also shown numerically

on the graph. A program such as Live Graph (Version 1.1, 2008), which is a real-time

data graph plotter, should be useful for this purpose as subsequent versions of our

algorithm are developed.

C. Motility Measurement in Videocapsule Endoscopy

Although videocapsule endoscopy has been commercially available for approximately

10 years, and devices are obtainable from different manufacturers [16,24], the approach

is currently used by gastroenterologists as a qualitative assist device when assessing the

extent and severity of villous atrophy in celiac patients [25-27]. Gastrointestinal moti-

lity is likely altered in untreated celiac disease due to mucosal injury, but this is cur-

rently gauged by indirect means i.e., by measuring the transit time from proximal to

distal small intestine [1,2]. Other groups have detected specific patterns in videocapsule
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images and used supervised learning methods to assess intestinal motility and dysfunc-

tion in motility [28,29]. In a prior study, correlation between transit time and DP has

been shown [8]. Yet, to show that these measurements are actually related to gastroin-

testinal motility will require external imaging of the small intestine during videocapsule

transit, or alternatively, locational information can be provided by a transponder

embedded in the videocapsule. Initial investigation of this relationship can be done

using an animal model.

D. Limitations

A limited number of videocapsule series was used to test the methods. Verification

should be done in a larger cohort. The methodology supposes, to a first approximation,

that camera angle and distance to the mucosal surface is uniform, and that coverage of

the surface area of the small intestinal lumen is relatively constant during transit of the

videocapsule. However, significant variation in these parameters during capsule transit

will likely occur, a limitation of the study.

Conclusions
In this study it was shown that periodicity in the range 0.1 - 0.2 Hz in videocapsule

image sequences can be identified by ensemble averaging spectral analysis even when

high levels of random noise, spatiotemporal phase shift, and air bubbles are present.

The data was analyzed by constructing a power spectrum for each pixel location over

200 image frames, and averaging, so that repeating spatiotemporal patterns could be

identified. By comparison, Fourier power spectra of the same data contained split and

missing frequency components, with inaccuracies in DF estimation averaging over 20%.

Use of the ensemble method and pixel-level analysis can therefore potentially reduce

or eliminate the need to impose complex masking, extraction, or corrective preproces-

sing measures prior to DF calculation. In future manifestations of the algorithm, we

will test the hypothesis that abnormal dominant periodicity as measured from video-

capsule image sequences is correlated to motility disorder and to the presence of vil-

lous atrophy in celiac patients.
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