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a b s t r a c t 

Background and Objective: Videocapsule endoscopy (VCE) is a relatively new technique for evaluating the 

presence of villous atrophy in celiac disease patients. The diagnostic analysis of video frames is currently 

time-consuming and tedious. Recently, computer-aided diagnosis (CAD) systems have become an attrac- 

tive research area for diagnosing celiac disease. However, the images captured from VCE are susceptible 

to alterations in light illumination, rotation direction, and intestinal secretions. Moreover, textural fea- 

tures of the mucosal villi obtained by VCE are difficult to characterize and extract. This work aims to find 

a novel deep learning feature learning module to assist in the diagnosis of celiac disease. 

Methods: In this manuscript, we propose a novel deep learning recalibration module which shows sig- 

nificant gain in diagnosing celiac disease. In this recalibration module, the block-wise recalibration com- 

ponent is newly employed to capture the most salient feature in the local channel feature map. This 

learning module was embedded into ResNet50, Inception-v3 to diagnose celiac disease using a 10-time 

10-fold cross-validation based upon analysis of VCE images. In addition, we employed model weights to 

extract feature points from training and test samples before the last fully connected layer, and then input 

to a support vector machine (SVM), k-nearest neighbor (KNN), and linear discriminant analysis (LDA) for 

differentiating celiac disease images from heathy controls. 

Results: Overall, the accuracy, sensitivity and specificity of the 10-time 10-fold cross-validation were 

95.94%, 97.20% and 95.63%, respectively. 

Conclusions: A novel deep learning recalibration module, with global response and local salient factors 

is proposed, and it has a high potential for utilizing deep learning networks to diagnose celiac disease 

using VCE images. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Celiac disease (CD) is a common immune-based disease that

ften affects the small intestine, which is also known as gluten-

ensitive enteropathy. It is a genetically determined autoimmune

isease in which the environmental precipitant, gluten, is known

 1 , 2 ]. This is a long-term chronic disease, prevalent in about 1%

f the worldwide population, and it is not currently curable.
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liadin/gluten is resistant to endopeptidases present in the in-

estinal mucosa, with a result that large gluten peptides up to 33

mino acids in length remain. In CD patients, an immune response

o these immunodominant peptides develops. The gliadin peptides

rigger an immune response that damages the small intestinal mu-

osa, which leads to many of the manifestations of CD [ 1 , 3 ]. CD

s only partially clinically distinguishable from other small intesti-

al diseases with malabsorption, because patients with these dis-

rders can present with similar signs and symptoms, including di-

rrhea, abdominal pain, weight loss, fatigue, and edema. Hence,

he diagnosis of CD may be missed and therapy might be delayed,

hich may cause numerous medical complications, including ma-

ignancy, osteoporosis, and infertility [4] . The small intestinal mu-
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Fig.1. VCE images of healthy controls (upper row) and celiac disease patients (lower row) . 
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cosa of healthy individuals contains finger-like projections known

as villi ( Fig. 1 , upper row). However, as shown in Fig. 1 (lower row),

the intestinal mucosa of CD patients with villous atrophy may have

a mosaic appearance and fissuring, which leads to a lowered ability

to absorb nutrients. 

Diagnostic steps to detect CD usually include serological test-

ing for tissue transglutaminase antibodies, upper gastrointestinal

endoscopy, and duodenal biopsy [ 1 , 5 , 6 ]. However, these examina-

tion methods are somewhat invasive. More recently, VCE has been

developed to promote a visual confirmation of suspected villous

atrophy in CD [5] . Compared with conventional endoscopy, VCE

is noninvasive and is able to provide evidence for subtle pathol-

ogy throughout the entire small intestine [ 5 , 6 ]. Physicians eval-

uate the mucosal images manually according to videoclips cap-

tured by VCE. However, it is a time-consuming and tedious pro-

cess to retrospectively analyze approximately 50,0 0 0 videoclips per

six-hour video. As a consequence, computer-aided algorithms have

been suggested, and rudimentary types have been introduced, to

assist the diagnosis of CD in recent years. 

Previous work focused on the visual quantitative analysis of vil-

lous atrophy to assess the severity of mucosal abnormalities in CD

[ 7 , 8 ]. Koh et al. [9] applied the discrete wavelet transform (DWT)

to extract significant textural and nonlinear features according to

wavelet decomposition coefficients, and employed particle swarm

optimization to select discriminative features for CD classification.

Although the results obtained by the DWT method were promis-

ing, the method is limited to evaluating the presence of lesions

based on grayscale images, which may ignore subtle color infor-

mation. The performance of image modeling has been shown to be

effective in patch-wise methods, because selective image patches

are more resistive to noise and artifacts as compared to the whole

image. Furthermore, the image patch is a tradeoff between pixel-

wise spatial texture information and image-wise structural infor-

mation, which can effectively capture the local image description

and provide informative edge representation. Some of the satis-

factory patch-wise CD detection methods have included threshold

and incremental learning [7] , dominant period analysis [10] , shape-

from-shading models [11] , and color masking method [12] . In prac-

tice, these methods were shown to be useful to detect subtle ab-

normalities and presence of mucosal atrophy in the small bowel.
owever, high-level feature representation has not been addressed

s yet. 

With the availability of immense computing power, deep learn-

ng has emerged as a mainstream and state-of-the-art method in

igh-level computer vision tasks [13–17] , and these could poten-

ially become useful techniques to detect salient and subtle fea-

ures of villous atrophy during automated analysis of videocapsule

mages. Convolutional neural networks (CNN) are a trainable end-

o-end architecture that can be used for hierarchical feature repre-

entation. Zhou et al. [18] , revealed that the sensitivity and speci-

city of CD analysis can be significantly improved by introduc-

ng the pre-rotation scheme in a GoogLeNet network. In Ref [19] .,

he multi-layer perceptron (MLP) model was developed based on

onventional endoscopic image data, wherein the results indicated

eep MLP architectures that can be highly suited for the classifica-

ion of CD. Nevertheless, a multi-layer neural network architecture

ould suffer from the well-known nuisance of the vanishing gra-

ient. 

The deep learning method is a pool of the CNN-based net-

ork. Several approaches were applied to elevate network perfor-

ance, such as increasing network depth [20] , extending the width

f the network (e.g. strict constraints on computational budget to

chieve higher performance using inception architecture) [21] , and

ttention mechanism [22] . However, more parameters were intro-

uced as increasing network depth, which is not applicable in sev-

ral sensitive scenes (e.g. embedded system development and mo-

ile phone application). The channel attention mechanism is an

mazing component, which sufficiently utilizes the connectivity

f the feature channel to adaptively boost useful information and

uppress weak information. 

It is well known that attention mechanism plays an important

ole in human perception [ 23 , 24 ] . The squeeze and excitation (SE)

ttention mechanism models the channel dependence in a global

eceptive domain, since local spatial information in celiac disease is

rone to strong correlation. We got the idea about the application

f the block-wise channel squeeze and excitation (BCSE) attention

odule from human visual perception, which can selectively fo-

us on important factors. For example, in order to recognize a new

ubject, one important property of our visual system is to give a

hole view of scene, and the other is to exploit the most salient
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Fig. 2. Schematic diagram of the BCSE learning module embedded in residual network. 

Fig. 3. The structure and deployment of SE embedded in residual and inception unit. 
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arts in the local spatial domain. The BCSE attention module not

nly retained the importance of the channel-wise feature map, but

lso improved the representation capacity in the block-wise spatial

ocation. 

In this work, we explored performance gains on SE [22] and

queeze spatial information after channel recalibration (SCSE)

25] and proposed BCSE learning module. Three recalibrated blocks

an then be seamlessly integrated into ResNet50 and Inception-v3

y combining the optimal channel and space-wise information. As

epicted in Fig. 2 , the BCSE learning module was embedded in

esNet50 to obtain a refined network. The original images were

asked, resized and delivered to a series of stacked convolution

locks for feature extraction. The BCSE module was embedded af-

er convolution blocks to recalibrate the importance of the block-

ise channel. The detailed information concerning the preprocess-

ng layer and convolution block was reported by Hu et al. [22] . Im-

lementation details concerning the BCSE module can be found in

ig. 3 (c). The outer arc represented skip connections. 

In addition, a different auxiliary classifier, such as a support

ector machine (SVM), K-nearest neighbor (KNN), and linear dis-

riminant analysis (LDA) can be used to validate the availability of

ur proposed BCSE learning module in adaptively detecting villous

trophy in the small intestinal mucosa, which is evidence of CD.

he novelty of our work is threefold: 

(1) We proposed a novel BCSE learning module which ad-

dressed the importance of local salient features into consid-

eration; it can be merged into CNN-based networks to pro-

mote CD recognition. Control experiments with Inception-v3

and ResNet50 networks indicated significant productivity of

BCSE in the diagnosis of CD. 

(2) The SE block with channel recalibration is firstly applied to

adaptively recalibrate the features of CD images. This can
boost the useful pathology information and suppress less

salient content. 

(3) The combination of ResNet50 with the SVM classifier can be

useful to measure discriminative and subtle villous atrophy

in CD. 

. Methods 

.1. SE learning module embedded in residual and inception unit 

Residual mapping is inherently important for training extremely

eep networks, and it can be performed by residual units. As

hown in Fig. 3 (a), the residual unit can be realized by attaching

 skip connection of stacked convolutional layers, rectified linear

nit layers, and batch-normalization layers. It can be formulated

s: 

 l+1 = Relu ( y l + F ( y l , w l ) ) (1) 

Here y l and y l + 1 denote the input and output feature maps of

he l -th residual unit, F ( •) is the residual unit mapping function,

nd Relu ( •) represents the activation function of the rectified linear

nit (Relu) [26] . 

The original plain network needs to learn the mapping function

( y l ) = F ( y l ) + y l , but it has to undergo sharp gradient increases. To

void this problem, a deep residual network, which inherits the ad-

antage of a normalization operation, can only fit the other map-

ing function of F( y l ) = H ( y l ) − y l . The residual unit can be de-

loyed in a sequential or skipped layer to realize identity map-

ing, and then directly deliver the feature from the former layer

o the subsequent one. Furthermore, the introduction of a resid-

al is more sensitive to propagate gradients and rapidly converges

ithout additional parameters. 
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Fig. 4. Illustration of network encoding component with SE and SCSE module (a and b). The proposed BCSE module (c). 
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As can be seen from the black box of Fig. 3 , the SE learning

module is embedded after the residual and inception unit to com-

plete the recalibration process. The dimension of the feature map

is assumed as R H × W × C , it can pass through a global average pool-

ing operation to aggregate global response in a channel-wise man-

ner. Then, a shared multi-layer perceptron (MLP) is used for atten-

tion inference to complete the excitation of channel dependence.

Finally, the feature maps are reweighted by sigmoid activation to

generate a new version that can be delivered to subsequent layers.

SE was seamlessly integrated into ResNet50 and Inception-v3 net-

works. Fig. 4 (c) shows the process of sequentially inferring a finer

attention map though SE and subsequent block-wise recalibration.

Here, the max-pooled features can compensate the average-pooled

features. 

Inception-v3 is a CNN-based network [21] . It inherits a special

incarnation of inception architectures, and the idea of factoriza-

tion into small convolutions was adopted in the inception mode.

The introduction of an inception mode has proven to be effective

in overcoming high computational costs [21] . Detailed information

about network architecture can be found in [21] . 

The derivation process of BCSE is as follows. Fig. 4 (a) shows the

3-dimensional recalibration process of SE, where SE was firstly re-

ported in [22] . The output feature map was U ∈ R H × W × C and

calculated through the residual network, which contains valuable

channel and spatial information. Here, the height of the feature
ap was defined as H and the width as W , and C denoted the

hannel size. For each residual unit, the SE learning module was

mbedded to complete the recalibration process ( Fig. 3 (a) black

ox). SE divided the feature map U into a vectorization version

 U 1, U 2, …U C ], here U z ∈ R H × W × 1 , where U z is the z -th ele-

ent of C. We acquired the global response of the feature channel

hrough average pooling to complete the spatial squeeze: 

 z = 

1 

H × W 

H ∑ 

i =1 

W ∑ 

j=1 

U z ( i, j ) (2)

Through the above spatial squeeze operation, the spatial di-

ension of the feature map was compressed, and each two-

imensional feature channel U z was transformed into a scalar. This

calar can capture global spatial information and distribution on

he feature channel. Then, the feature vector g z was computed as:

ˆ  = W 1 ( δ( W 2 ( g) ) ) with W 1 ∈ R C× C 
16 and W 2 ∈ R 

C 
16 

×C , where W 1 

nd W 2 denote the weighting of two fully connected (FC) layers,

nd δ( •) represents the rectified linear unit layer [26] . Then, the

igmoid activation operation is added to the output σ ( ̂  g ) vector

ange in the interval [0, 1] to recalibrate the importance of each

lobal feature channel: 

ˆ 
 = 

[
U 1 σ

(
ˆ g 1 

)
, U 2 σ

(
ˆ g 2 

)
, · · · , U C σ

(
ˆ g C 

)]
(3)

In the SE attention module, the global average pooling opera-

ion serves as a global information container; it can capture the
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lobal response of an image. Nevertheless, it has low sensitiv-

ty in a local spatial region and may miss the most salient fea-

ure. In this regard, we proposed a novel hybrid BCSE learning

odule. Fig. 4 (c) depicts that the feature map computed after SE

as assumed as ˆ U ∈ R H×W ×C . BCSE divides the feature map 

� 

U into

 vectorization version [ ̂  u 1 , ̂  u 2 , • • •, ̂  u N ] , here ̂  u N ∈ R (h ×w ×C) , N ∈
 

(H/h ×W/w ) , ̂  u k = [ ̂  u 1 
k 
, ̂  u 2 

k 
, • • •, ̂  u C 

k 
] , k = 1 , 2 , • • •, N where h is the

eight and w is the width of the block-wise feature map. The key

perations of the block-wise squeeze and excitation exhibited spa-

ial max-pooling and channel excite. We treated each feature map

n an iterative manner to acquire the block-wise salient response

hrough spatial max-pooling: 

 k = arg max ˆ u k ( i, j ) , i = 1 , · · · , h and j = 1 , · · · , w (4)

here m k ∈ R 1 × 1 × C , and each block-wise channel feature map

an acquire the most salient feature. Then, the feature vector m k 

as computed as: ˆ m k = W 

′ 
1 ( δ( W 

′ 
2 ( m k ) ) ) with W 

′ 
1 ∈ R C× C 

16 and W 

′ 
2 ∈

 

C 
16 

×C . Thereafter the sigmoid activation operation was added to

he output σ ( ̂  m k ) vector range in the interval [0, 1] to recalibrate

ach block-wise feature channel: 

ˆ 
 

′ 
k = 

[
ˆ u 

1 
k σ

(
ˆ m 

1 
k 

)
, ˆ u 

2 
k σ

(
ˆ m 

2 
k 

)
, · · · , ˆ u 

C 
k σ

(
ˆ m 

C 
k 

)]
(5) 

Then, the block-wise recalibration was obtained by ˆ U 

′ =
 ˆ u ′ 1 , ̂  u ′ 2 , · · · , ̂  u ′ N ] . Through these operations, each block-wise feature

hannel assigned a weight to capture max-pooled channel-wise

ependencies. 

.2. SCSE learning module embedded in residual and inception unit 

Spatial information is an important component in medical im-

ge analysis. As can be observed from Fig. 3 (b), Roy et al. pro-

osed SCSE attention module for image analysis [25] . The channel

ecalibration of the residual mapping was supposed as ˆ U , where
ˆ 
 ∈ R H×W ×C . If we consider pixel-wise spatial information, ˆ U can

e written as ˆ U = [ ̂  u 1 , 1 , ̂  u 1 , 2 , · · · ˆ u i, j · · · ˆ u H,W ] , here ˆ u i, j ∈ R 1 ×1 ×C Each

ˆ  i, j in feature map 

ˆ U represented the location of each spatial el-

ment. The spatial squeeze was computed through a convolution

peration, where feature channel, kernel size, and stride are 1, 1,

nd 1, respectively. Therefore, the original feature map 

ˆ U was con-

erted to 
� 

U 

′ 
∈ R (H ×W ×1) . In this regard, each 

ˆ U 

′ 
i, j 

can capture the

lobal dependency in point-wise spatial information and assign a

eight to each spatial location. The sigmoid function σ ( •) pro-

ected each spatial location to a scalar version. Then, the spatial

ecalibration can be realized as follows: 

 out = 

[
σ
(

ˆ U 

′ 
1 , 1 

)
ˆ u 

1 , 1 , σ
(

ˆ U 

′ 
1 , 2 

)
ˆ u 

1 , 2 , · · ·σ
(

ˆ U 

′ 
i, j 

)
ˆ u 

i, j , · · ·σ
(

ˆ U 

′ 
H,W 

)
ˆ u 

H

. Experiments 

.1. Data acquisition and preprocessing 

All experimental data were acquired from two PillCam imaging

ystems (Given Imaging, Yokneam, Israel and Medtronics)—SB2 and

B3, which were interpreted by two experienced gastroenterolo-

ists at Columbia University Medical Center, New York, USA. The

B2 dataset contained eight patients’ data with villous atrophy and

ata from eight healthy controls, and the recorded videoclips in-

luded regions of the duodenal bulb, distal duodenum, proximal

ejunum, distal jejunum, and ileum. The SB3 dataset contained four

eliac patients’ data and that of five healthy controls, including the

egions of duodenum, ileum and jejunum. Both celiac patients and

ealthy controls swallowed a PillCam capsule after fasting. Then

he capsule, which contained a mini camera, travelled through the

mall intestine by peristalsis. The raw data obtained from the ex-

ernal receiving sensor was a series of videoclips with a frame rate
f two per second. Finally, the total dataset contained 52 CD video-

lips and 55 healthy clips. 

The videoclips were divided into frames with dimension

76 × 576 pixels. Then, 20 images of each videoclip were se-

ected with evident villous atrophy. Those images included a mo-

aic appearance, fissuring, and scalloping of mucosal folds, mostly

xcluding degraded images with opaque extraluminal fluid, low-

ontrast, air bubbles, and overexposure. Finally, the entire database

f 2140 color images with 576 × 576 pixels were gathered by

eans of VCE. Among them, 1100 images belong to the healthy

ucosa class, and the remaining 1040 images belong to the dam-

ged mucosa class, as likely affected by CD. Then, the original

76 × 576 pixel images were masked and cropped into 512 × 512

imensions, to remove the influence of boundary font and the

lack box. 

.2. Celiac disease classification 

In this section, we discuss several persuasive comparative ex-

eriments that were performed in the study. SE, BCSE and SCSE in

onjunction with ResNet50 and the Inception-v3 network are pre-

ented. All of the classification performance measures were imple-

ented in the Python 2.7 interpreter, based on the PyTorch version

.4.1 framework. They ran on an Inter(R) Xeon(R) CPU 2.40 GHz

nd 64.0 GB RAM accompanied by two NVidia GTX1080Ti graph-

cs cards with 22 GB memory. The residual network structure of

esNet50 was reported in previous studies [ 22 , 27 ]. Briefly, the bot-

leneck structures of 1 × 1, 3 × 3 and 1 × 1 were embedded into

ach residual block to form different convolutional blocks, which

iffered in the output channel size. The first and last pooling lay-

rs were not counted. The remaining 3, 4, 6, and 3 convolution

locks, the preprocessed convolutional layer, and the last fully con-

ected layer, formed the 50 layers structure of ResNet50. As can

e seen from Fig. 2 , SE, SCSE and BCSE learning modules were em-

edded after each convolution block to construct different variants.

his enabled the ResNet50 to reap the benefits of the SE, SCSE and

CSE units. Similarly, SE, SCSE and BCSE learning modules were

mbedded after each inception structure to form different variants

f Inception-v3. 

A 10-time 10-fold cross-validation strategy was performed in

his study. All data were randomly shuffled and split into 10 folds.

e took turns to let 9 folds be involved in training, while the

ther participated in test. The mean and standard deviation were

iven from the 10 times results. All data were processed as a ten-

or, and each channel was normalized with mean = [0.46, 0.456,

.406] and standard deviation = [0.229, 0.224, 0.225], as described

n [22] . The weight initialization was based on He initialization

28] . CD images were assigned with label 0, and control subjects

ith label 1, respectively. The learning rate was initialized with a

alue of 0.01. If the present training loss was higher than the pre-

ious one, the learning rate was decayed by 0.5. The batch-size

as 16 in all networks, due to the limitation of computer mem-

ry. In addition, we adopted the L2 regularization strategy to pun-

sh the part which took excessive weight in the loss function with

 weight decay λ= 0.0 0 05, to avoid overfitting. The learning rate

nd weight decay were referred to the original paper of the base-

ine SE and SCSE modules for better optimization and validation of

he proposed BCSE module [ 22 , 25 ]. The dense feature of CD was

onstructed by the models that adaptively optimized through the

dam algorithm. The cross-entropy loss function was employed to

alculate the network output with ground-truth. After one shot

raining, two aspects were tested. One was the network output

rovided by its end-to-end Softmax classifier. Secondly, the fea-

ure points were extracted by a parametric model before the last

ully connected layer in the training and test data. After extraction,

raining and test data points were obtained with dimension of the
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Table 1 

celiac disease classification with ResNet50 embedded with different attention modules. 

Network Acc.(%) Sen.(%) Spe.(%) F1-score(%) Recall(%) Param.(M) GFLOPs 

ResNet50 + None 90.73 (0.07) 92.58 (0.08) 88.70 (0.11) 90.15 (0.09) 88.70 (0.11) 22.42 4.136 

ResNet50 + SE 93.63 (0.06) 93.62 (0.08) 93.30 (0.05) 93.72 (0.05) 93.30 (0.05) 24.84 4.142 

ResNet50 + SCSE 87.44 (0.07) 90.71 (0.09) 84.37 (0.12) 86.54 (0.07) 84.37 (0.12) 24.85 4.145 

ResNet50 + BCSE 95.85 (0.04) 96.94 (0.05) 94.57 (0.05) 95.75 (0.04) 94.57 (0.05) 27.66 4.146 

∗mean (standard deviation) of 10-time statistical results. 
∗∗None represent the original network, with accuracy(Acc.), sensitivity(Sen.), specificity(Spe.), F1-score, Recall, parame- 

ters(Param.) and floating point operations(FLOPs) as evaluation matrix. 

Fig. 5. The mean accuracy plot of 10-time 10-fold using ResNet50 embedded with 

SCSE, SE and BCSE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Celiac disease classification rate in 10-time statistics with Softmax, SVM, 

KNN and LDA classifiers using 10-fold cross-validation. 
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sample size ∗2048. Those dense feature points can be used to fit

SVM, KNN, and LDA to obtain the corresponding ten times statis-

tics. SVM was configured with a radial basis function (rbf) kernel,

penalty coefficient (gamma) of 1, and cost factor (C) of 1. The non-

parametric KNN was a distance-based classifier with a neighbor of

10 in accordance with a previous study [9] . 

4. Results 

4.1. Evaluation of the BCSE learning module in ResNet50 

To validate the contribution of the proposed BCSE learning

module in CD recognition, we reimplemented ResNet50 and em-

bedded with several baseline learning modules. All images were

resized from 512 × 512 to 224 × 224. In this study, the Grid

Search was used to enumerate all candidate h and w with a step

size of 2. The optimal block-size in BCSE was 14 × 14. As dis-

played in Fig. 5 , performance gains of BCSE in Softmax, SVM,

KNN, and LDA classifiers all outperformed SE and SCSE with re-

spect to average accuracy statistics. Table 1 lists the performance

matrix from average accuracy, sensitivity, specificity, F1-score, re-

call rate and model parameters, where its definition can be found

in [29] . From the analysis of standard deviation, the proposed

BCSE is more stable than SE and SCSE. Furthermore, it was found

that the BCSE module demonstrated significant improvement in

performance as compared with state-of-the-art baseline atten-

tion modules, with minimal additional parameters and computa-

tional complexity. ResNet50 embedded with BCSE achieved an av-

erage accuracy, sensitivity, specificity, F1-score, and recall rate of

95.85%, 96.94%, 94.57%, 95.75% and 94.57%, respectively. Those re-

sults exceed by 2.22%, 3.32%,1.27%, 2.03% and 1.27%, as compared to

ResNet50 with SE. It also can be found that SCSE suffered from a

low productivity in CD recognition. This may result from the SCSE

was generally employed for image segmentation. 
Fig. 6 depicted the 10-fold average recognition accuracy of BCSE

mbedded in ResNet50 from 10-times statistics. The feature points

ere further sent to SVM, KNN, and LDA for a second training pro-

ess. It can potentially promote gains versus its end-to-end Soft-

ax classifier. In particular, retraining SVM was superior to Soft-

ax, KNN, and LDA classifiers each time. Table 2 shows the mean

nd standard deviation for 10-time 10-fold. Here, BCSE demon-

trated a substantial performance increase as compared with SE.

ig. 7 depicts the training and validation loss of ResNet50. It was

ound that BCSE consistently enjoys performance improvements

uring training. After 100-epochs, the models were evolved until

raining and validation loss converged. 

.2. Evaluation of BCSE learning module in Inception-v3 

To assess the shared benefit gains in other CNN based networks,

 benchmark Inception-v3 network was selected. We resized the

mages from 512 × 512 to 299 × 299 pixels, and the auxiliary

lassifiers were closed as parameters regularization [21] . The pro-

ocol of hyper-parameter and cross validation were consistent with

esNet50. As shown in Fig. 8 , the same phenomenon was observed

hat Inception-v3 embedded with BCSE was superior to SCSE and

E in CD recognition. Table 3 lists the performance comparison of

he end- to-end Softmax model. BCSE can potentially outperform

CSE and SE, which has an average accuracy, sensitivity, specificity,

1-score, and Recall rate of 87.30%, 88.09%, 86.45%, 87.05% and

6.45%, respectively. They exceeded Inception-v3 embedded with

E by 0.53%, −2.07%, 3.05%, 0.76% and 3.05%. This demonstrates

hat the BCS E learning mechanism is more effective than SE in the

nception-v3 network for CD recognition. Fig. 9 depicts the training

urves of SE-Inception-v3 and BCSE-Inception-v3 within 100 itera-

ions, which showed the robustness of our proposed BCSE learning

odule. 
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Table 2 

celiac disease classification with different classifiers. 

Network 
SVM(rbf) KNN 

Acc.(%) Sen.(%) Spe.(%) Acc.(%) Sen.(%) Spe.(%) 

ResNet50 + CSE 94.06 (0.05) 94.17 (0.06) 94.04 (0.063) 93.97 (0.05) 93.26 (0.05) 94.73 (0.04) 

95.94 (0.04) 97.20 (0.03) 94.53 (0.03) 95.07 (0.04) 96.23 (0.04) 95.63 (0.04) 

Network 
LDA soft-max 

Acc.(%) Sen.(%) Spe.(%) Acc.(%) Sen.(%) Spe.(%) 

ResNet50 + CSE 89.96 (0.10) 91.39 (0.10) 88.64 (0.10) 93.63 (0.06) 93.62 (0.08) 93.30 (0.05) 

ResNet50 + BCSE 93.44 (0.10) 95.53 (0.07) 91.27 (0.13) 95.85 (0.04) 96.94 (0.05) 94.57 (0.05) 

∗∗ where accuracy (Acc.), sensitivity (Sen.), specificity (Spe.) as evaluation matrix. 

Fig. 7. Training curves of SE-ResNet50 and BCSE-ResNet50 in 10-time 10-fold. 

Fig. 8. The mean performance plot of 10-time 10-fold using Inception-v3 embedded with SCSE, SE and BCSE. 

Table 3 

Celiac disease classification with Inception-v3 embedded with different learning modules. 

Network Acc.(%) Sen.(%) Spe.(%) F1-score(%) Recall(%) Param.(M) GFLOPs 

Inception-v3 + None 84.71 (0.09) 88.67 (0.10) 80.89 (0.11) 84.08 (0.09) 80.89 (0.11) 20.78 5.747 

Inception-v3 + SE 86.77 (0.06) 90.16 (0.08) 83.40 (0.12) 86.29 (0.07) 83.40 (0.12) 21.87 5.747 

Inception-v3 + SCSE 79.96 (0.09) 81.08 (0.20) 78.73 (0.10) 80.28 (0.07) 78.73 (0.10) 21.88 5.747 

Inception-v3 + BCSE 87.30 (0.06) 88.09 (0.07) 86.45 (0.09) 87.05 (0.07) 86.45 (0.09) 23.40 5.747 

∗mean (standard deviation) of 10-time statistical results. 
∗∗None represent the original network, with accuracy(Acc.), sensitivity(Sen.), specificity(Spe.), F1-score, Recall, parameters(Param.) 

and floating point operations(FLOPs) as evaluation matrix. 
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Fig. 9. Training curves of SE-Inception-v3 and BCSE-Inception-v3 in 10-time 10-fold. 
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5. Discussion 

CD often manifests as scalloped duodenal folds, mucosal fis-

sures, and submucosal vessels in the small intestinal mucosa. Ow-

ing to its special feature alignment patterns, we proposed a novel

BCSE recalibration module to capture its salient features, where it

can be more sensitive to a local feature region. The comparative re-

sults showed that BCSE achieved better feature representation ca-

pacity as compared with SE and SCSE. 

The purpose of this work was to find a novel deep learning at-

tention module for CD recognition of VCE images. However, cur-

rent intelligent deep learning solutions usually are equipped with

many parameters, resulting in serious time consumption of the

computing resource. Simultaneously, greater computational com-

plexity would occur with a larger data dimension. It is difficult to

make a satisfactory balance between computer memory and real-

time processing. Hence, most computer vision tasks (e.g., CIFAR-10,

ImageNet and FERET) are downsampled so that the image size is

smaller than 224 × 224 pixels [30–32] . 

The traditional methods were based on a prior feature selection

and classifier training, which can distinguish villous atrophy from

normal small intestinal mucosa [33] . However, this may lack sen-

sitivity for subtle changes in villous atrophy and high-dimensional

features of the image. The deep learning method is a hierarchi-

cal dense representation mechanism. In this work, we integrated a

global SE learning module into the CD recognition process. In par-

ticular, the importance of local salient textural features were taken

into consideration. The proposed BCSE learning module, serving as

a special attention and gating mechanism, was used in each fea-

ture channel to enhance the expressive ability of each residual and

inception unit. 

Computational time plays an important role in medical image

analysis. Each feature map was divided block-wise by the BCSE,

which adopted a new cascaded recalibrate mode. Fig. 10 displayed

the forward propagation running time versus different baseline

attention module in ResNet50 and Inception-v3 networks, which
as input with batch-size VCE images. Regarding the ResNet50

etwork, the running time was increased as the complexity of

he baseline attention module increased. It also showed a similar

rend in the Inception-v3 network. Notably, BCSE blocks showed a

ime extension in ResNet50 as compared to other attention mod-

les. It only increased a very small fraction in the Inception-

3 network. It can be found that the original ResNet50 (no ad-

itional attention module) has a small time consumption, while

he original Inception-v3 network requires a larger time consump-

ion. Hence, the proportion of original network time consumption

trongly affected the running time of the attention module embed-

ed network. In addition, the time extension of BCSE in ResNet50

as higher than BCSE in the Inception-v3 network, because the

esNet50 network had 16 residual units while only 11 inception

nits were presented in Inception-v3 network. The time extension

ccurred at the network training phase. As the network became

table, there was no need to train again for inference. Hence, the

ime cost was negligible in the context of significant performance

ains, which ResNet50 embedded with BCSE exceeded by 8.55%,

.85%, 8.12%, 8.7% and 8.12%, as compared to Inception-v3 with

CSE in average accuracy, sensitivity, specificity, F1-score, and re-

all rate. 

It should be noted that the proposed method still has several

imitations. It is comparatively new to study celiac disease by us-

ng video capsule endoscopy. The benchmark dataset is small from

atient-wise division (only comprised of 12 patients and 13 con-

rols). In addition, with the limited numbers of volunteers, the

atient-wise results may not help to statistically evaluate the per-

ormance of different learning modules (BCSE, SE and SCSE). We

ould need to recruit more volunteers to collect data for patient-

ise division in future studies. The purpose of this study was to

mplement a novel joint learning module for celiac disease anal-

sis. The parameter setting was referred to the reported baseline

ttention module [ 22 , 25 ]. It could be finely adjusted and further

ptimized for better classification performance. Another limitation

s that the BCSE module requires a longer computation time for
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Fig. 10. The forward propagation time versus different baseline attention modules in the ResNet50 and Inception-v3 networks. 

Table 4 

A list of previous publications on the diagnosis of CD. 

Authors Year Techniques Imaging system Conclusion 

Ciaccio et al. 2010a • Mean and SD in brightness SB2 

Threshold classifier: 

SEN: 80% 

SPE: 96% 

Incremental classifier: 

SEN: 88% 

SPE: 80% 

Ciaccio et al. 2010b • Mean and SD in brightness SB2 
SEN: 92.7% 

SPE: 93.5% 

Ciaccio et al. 2011 

• Shape-from-shading principles 

SB2 

SEN:83.9 
• Image transformation SPE:92.9 

ACC:88.1 

Ciaccio et al. 2014 • Histogram level SB2 
SEN: 76.9%–84.6% 

SPE: 69.2%–92.3% 

Zhou et al. 2017 • CNN (22-layer GoogLeNet) SB2 
SEN: 100% 

SPE: 100% 

Koh et al. 2018 

• DWT 

SB2 and SB3 

SEN: 88.43% 
• Nonlinear, textural features SPE: 84.60% 
• PSO ACC: 86.47% 
• SVM classifier 

Ciaccio et al. 2019 
• color masking 

SB2 and SB3 ACC:80% • linear discriminant function 

Vicnesh et al. 2019 

• Daisy descriptors 

SB2 and SB3 

SEN: 94.35% 
• PSO SPE: 83.20% 
• Decision Tree, kNN,PNN, SVM ACC: 89.82% 
• PNN, SVM 

Present work 2019 

• BCSE learning module 

SB2 and SB3 

SEN: 97.20% 
• ResNet50, Inception-v3 SPE: 95.63% 
• SVM, KNN, LDA ACC: 95.94% 

n  

g  

p

 

m  

i  

l

6

 

t  

i  

a  

p  
etwork inference. However, the current study, including the joint

lobal channel and local salient spatial recalibration can serve as a

roof-of-concept for celiac disease diagnosis. 

As can be seen from Table 4 , compared to the state-of-the-art

ethods, our proposed methods sufficiently utilized the RGB color

nformation to extract high-level and specific dense features of vil-

ous atrophy in CD without any image selection. 
. Conclusions 

A novel deep learning feature learning module was developed

o boost the useful local pathology information while suppress-

ng less meaningful components, to enable the development of

 tool assistive for CD diagnosis. The CNN based method is a

ool of models, which does not involve the process of feature
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selection, while the proposed BCSE learning module offers a new

choice for utilizing deep learning methods over the conventional

machine learning algorithm to improve the diagnosis of CD. We

extracted dense feature vectors from ResNet50 and Inception-v3

embedded with SE, SCSE and BCSE. Then, classical SVM (rbf),

KNN, and the LDA classifiers model were utilized to validate

the utility of the proposed methods. The results demonstrated

that block-wise channel squeeze and excitation successfully dis-

tinguishes villous atrophy in CD from controls, with an accuracy

of 95.94%, and sensitivity and specificity of 97.20% and 95.63%,

respectively. 

Recently, we became more focused on computer assisted di-

agnosis for CD. Due to the special imaging modality, the Scale-

invariant feature transform (SIFT) is of interest and can be inte-

grated into deep learning methods in future work. In addition,

deep learning techniques have shown significant advantages in the

field of medical image analysis. More powerful algorithms and

datasets of larger size and structure can be considered for inte-

gration of technologies for the diagnosis of CD, to achieve rapid

diagnosis and treatment. 
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